Study of medical physics provides coherent management of basics knowledge from the field of medical physics and the ability to connect this knowledge with other important fields for the successful diagnosis and treatment of diseases, like anatomy, physiology, and radiotherapy. Students get skills for solving coherent problems like radiotherapy planning, calibration of the measuring systems, insuring quality assurance for the operation of medical devices. Study of medical physics allows students to understand basic structure of medical physics and its integration with subfields, especially with physics of radiotherapy, physics of diagnostic radiology, physics of nuclear medicine and health physics. During the time of the study, students will get familiar with informational-communicational technology and with systems that are used in diagnostics and treatment.

For all interested in the study of medical physics, we suggest to take a look at the study program and check the presentation of the program.

After the studygama kamera

Medical imaging

One of the most important factors in improving the treatment of complex diseases in last few decades is undoubtedly the development of accurate and reliable methods of medical imaging. Ultrasound, advanced X-ray methods, magnetic resonance and positron emission tomography have already become a standard of care in clinics. However, those methods are still improving. The task of medical physics in not only clinical imaging, but also the development of new methods (thermography, electrical impedance tomography) and improvement of the existing methods and devices.


An important part of medical physics is radiotherapy treatment planning and optimization. At lot of different aspects need to be taken into account in order to achieve minimum side-effects during the irradiation.

Radiation protection and quality assurance

Devices that produce ionizing radiation are by their nature a subject of strict controls and regulations. The devices in clinical use are a subject of daily, weekly and semi-annual precision testing to ensure accurate operation.

Master’s theses topics

Andrej Studen

Boris Majaron

Jure Bon

  • Modelling and simulation of impact of transcranial magnetic stimulation on electric field formation in brain tissue

Matija Milanič

Petra Tomše

  • Optimisation of patient doses in FDG-PET imaging
  • Individual 3D dosimetry calculation on basis of SPECT imaging in radionuclide therapies
  • Patient dose estimation in I-131 thyroid therapy and correlation to other clinical parameters
  • Optimisation of reconstruction parameters in FDG-PET brain imaging

Rok Dolenec

  • New type of ultra-fast sensor for TOF-PET imaging

Urban Simončič

  • Optimization of acquisition and kinetic analysis methods for dynamic PET images
  • Application of kinetic analysis on dynamic PET images for cancer treatment with antiangiogenic therapies
  • Optimization of biologically conformal radiotherapy

Possible topics for Prešeren award for medical students

Simona Gaberšček